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BACKGROUND

Power System Planning
•A power grid is a net-
work connecting produc-
ers and consumers
•Power system planning
integrates new elements
into the power grid
•Our work focuses on new
generators

Our Goals
X Satisfy peak load in a future year
XEnsure incentive compatibility of generators
–Produce electricity
– Invest in new generators

Unit Commitment (UC) Problem
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For each hour decide:
•Production unit
states
•Production levels
Variables:
– ug→ startup deci-
sions

– pg→ power output
levels

– d→ electricity load
–Xg→ commitment
and production
constraints

Electricity Price: aCHP
•We use approximated convex hull price (aCHP)
• Solve LP relaxation of the UC problem → obtain the
shadow price of the load constraint

∑
g∈G pg = d

Revenue Adequacy In the Literature
•Martin et al. [2010] uses cutting planes to eliminate
non-profitable solutions
•Ruiz et al. [2012] derives revenue adequate prices
using a primal-dual model
•Dvorkin et al. [2017] uses a two-stage model to ensure
profitability of the energy storage investment

FOur contribution: Ensuring profitability in genera-
tion expansion

MODEL
Overview

Investment Cost
+

2nd Stage Duality Gap
Minimize:

1st Stage Constraints
(Investment Decisions)Subject to:

2nd Stage MIP Primal Constraints
(UC Decisions)

2nd Stage LP Dual Constraints
(Pricing Decisions)

2nd Stage Complementarity Constraints
(Profitability Requirements)

I In the objective, we minimize the duality gap to be close to the
market equilibrium

I 2nd stage MIP primal constraints include traditional UC constraints,
such as load constraints, reserve constraints, etc.

I 2nd stage LP dual constraints contain dual variables for the electric-
ity prices and reserve prices

A Mixed Integer Bilinear Program
Our model is a large-scale Mixed Integer Bilinear Program
•Contain binary variables for investment and commitment decisions
•Both LP dual constraints and complementarity constraints have
bilinear terms:
� In LP dual constraints:
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� In complementary constraints:
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Cost
�Definition and type of some variables:
– wg ∈ {0, 1}: investment decisions for thermal generators
– pRenewg ≥ 0: investment decisions for renewable generators
– πgdt, πSpin

gdt , πOp
gdt, ζgdt, ξgdt ≥ 0, αRenew

gdt : dual variables
– pGen

gdt , p
Spin
gdt , pQS

gdt ≥ 0: production/reserve levels
– λdt, %Spindt , %Op

dt ≥ 0: electricity/reserve prices

SOLUTION METHODS
Discretization

• Similar technique as Dvorkin
et al. [2017]
•Linearize by discretizing the
dual variables in bilinear
terms

/Restrict the original problem
/Add many binary variables,
size grows very quickly

Other Options
•Generalized Benders de-
composition (Geoffrion,
1972)
•Global optimization al-
gorithm (Floudas and
Visweswaran, 1993)
•Commercial solvers

PRELIMINARY EXPERIMENTAL RESULTS
Data

☼Data from California Independent Operator (CAISO)
Instance nOldTher nNewTher nOldRenew nNewRenew nDay
SmallInst 4 4 4 4 1
MedInst 52 20 4 4 1

Computational Performance
Time/Gap

Instance OurModel TraditionalModel
SmallInst 11% 0.50 sec
MedInst - 1.06 sec
•Time Limit: 30 minutes
• - : Fails to find a feasible solution

⇒ Our model is solved
via discretization
⇒ Discretization in-
creases the size of our
model significantly, mak-
ing it computationally
hard

Profitability of Thermal Generators
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⇒Experimented on SmallInst
⇒ In traditional model all generators are non-profitable
FOur model is incentive compatible

Ongoing Work
•Looking for better algorithms to make our model practical
• Incorporate energy storage/capacity market


