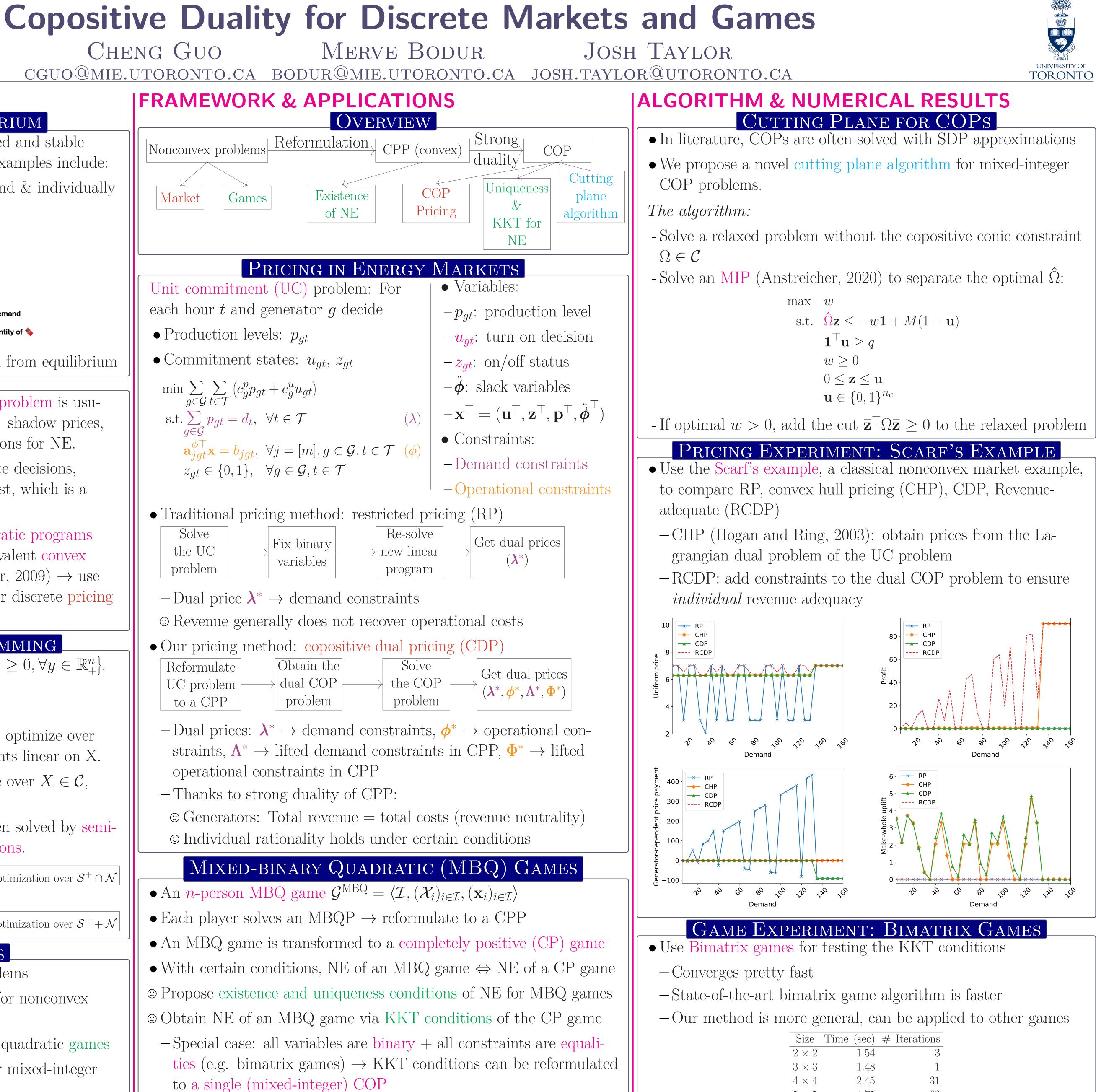


COPs

CHENG GUO

BACKGROUND ECONOMIC EQUILIBRIUM The Economic equilibrium is a balanced and stable state in an economic problem. Some examples include: \rightarrow Market equilibrium: supply = demand & individually Market rational. Price Supply \$1 Demand 15 Quantity of 🔦 \rightarrow Nash equilibrium (NE): no deviation from equilibrium MOTIVATION • Equilibrium for a convex economics problem is usually obtained by strong duality. E.g. shadow prices, Karush-Kuhn-Tucker (KKT) conditions for NE. • For nonconvex problems with discrete decisions, strong duality generally does not exist, which is a challenge. \star Our framework: mixed-binary quadratic programs $(MBQPs) \rightarrow reformulate to an equivalent convex$ (completely positive) program (Burer, 2009) \rightarrow use strong duality of convex programs for discrete pricing and game problems. COPOSITIVE PROGRAMMING • Copositive cone: $\mathcal{C} = \{ X \in \mathcal{S} | y^\top X y \ge 0, \forall y \in \mathbb{R}^n_+ \}.$ • Completely positive cone: $\mathcal{C}^* = \{ X X^\top | X \in \mathbb{R}^{n \times r}, X \ge 0 \}.$ • CPP (completely positive program): optimize over $X \in \mathcal{C}^*$, with objective and constraints linear on X. • COP (copositive program): optimize over $X \in \mathcal{C}$, dual of CPP. • In literature, CPP and COP are often solved by semidefinite program (SDP) approximations. MBQP Reformulation CPP Relaxation Optimization over $\mathcal{S}^+ \cap \mathcal{N}$ Dualization Restriction Optimization over $S^+ + N$ CONTRIBUTIONS • A notion of duality for discrete problems • A novel COP-based pricing scheme for nonconvex energy markets • Theoretical results for mixed-binary quadratic games • An exact cutting plane algorithm for mixed-integer



\bigcirc	,	1 1
Size	Time (sec)	# Iterations
2×2	1.54	3
3×3	1.48	1
4×4	2.45	31
5×5	4.75	62