Copositive Duality for Discrete Energy Markets

Cheng Guo

School of Mathematical and Statistical Sciences Clemson University

Joint work with Merve Bodur and Josh Taylor

MIP Workshop 2023

Cheng Guo, Merve Bodur & Josh Taylor

COP Duality for Discrete Markets & Games

MIP Workshop 2023 1 / 24

Design A Pricing Scheme for Energy Markets with Discreteness

- · Pricing is central to energy markets
- · Electricity prices are based on shadow prices
 - Idealized market structure
- Discrete decisions in day-ahead market: start-up, on/off statuses
- Our solution: convexification of MIP

Introduction	Convexification	Pricing Scheme	CuttingPlaneAlgo	
Outline				

- Convexification of Unit Commitment using copositive programming
- Pricing Scheme in Discrete Energy Markets
 - Pricing and individual rationality in spot market
 - Pricing and individual rationality in day-ahead market
- Cutting plane algorithm for copositive programs

Convexification	CuttingPlaneAlgo	

Introduction

2 Convexification of Unit Commitment

⁽³⁾ Pricing Scheme in Discrete Energy Markets

4 A Novel Cutting Plane Algorithm for COP

5 Summary

Unit Commitment (UC) Problem

• In the day-ahead market, decide the operation schedule of generators at each hour

MIP Model for Unit Commitment

$$\begin{array}{ll} \min & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right) \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_{gt} = d_t & \forall t \in \mathcal{T} \\ & \mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & \mathbf{x} \in \mathbb{R}^n_+ \\ & z_{gt} \in \{0, 1\} & \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

- *p_{gt}*: production level
- *u_{gt}*: turn on decision
- *z_{gt}*: on/off status
- $\ddot{\phi}$: slack variables

•
$$\mathbf{x}^{\top} = (\mathbf{z}^{\top}, \mathbf{u}^{\top}, \mathbf{p}^{\top}, \ddot{\boldsymbol{\phi}}^{\top})$$

	Convex	ification P		CuttingPlaneAlgo	
$MIP \rightarrow$	Completely	Positive Progr	amming (C	CPP) (Burer, 20)09)
\mathcal{P}^{MIP} (no	nconvex):		\mathcal{P}^{CPP} (co	onvex):	
min	$\mathbf{c}^{ op}\mathbf{x}$		min	$\mathbf{c}^{ op}\mathbf{x}$	
s.t.	$a_j^ op \mathbf{x} = b_j,$	orall j=1,,m	s.t.	$\mathbf{a}_j^ op \mathbf{x} = b_j$	orall j=1,,m
	$x^k \in \{0,1\},$	$orall k \in \mathcal{B}$		$\mathbf{a}_j^ op X \mathbf{a}_j = b_j^2$	orall j=1,,m
	$\mathbf{x} \in \mathbb{R}^n_+$			$x^k = X_{kk}$	$orall k \in \mathcal{B}$
• If x ^k	$\in \{0,1\}$, then	$x^k = (x^k)^2$		$\left[egin{array}{cc} 1 & \mathbf{x}^{ op} \ \mathbf{x} & X \end{array} ight] \in \mathcal{C}^*$	

• Let $X = \mathbf{x}\mathbf{x}^{\top}$, Enforce $\mathbf{x}^{k} = X_{kk}$

• Constraints to enforce $X = \mathbf{x}\mathbf{x}^{\top} \rightarrow$ there are different ways to do this for MIQP!

• Reformulation-Linearization Technique (RLT) constraint: $\mathbf{a}_j^{\top} X \mathbf{a}_j = b_j^2$

$$\bullet \left[\begin{array}{cc} 1 & \mathbf{x}^\top \\ \mathbf{x} & X \end{array} \right] \in \mathcal{C}^*$$

• Strong duality holds for CPP under regularity condition is satisfied.

CI FMS#N

	Convexification	Pricing Scheme	CuttingPlaneAlgo	

Introduction

2 Convexification of Unit Commitment

③ Pricing Scheme in Discrete Energy Markets

A Novel Cutting Plane Algorithm for COP

5 Summary

Setup of the Energy Market

- Supply: power plants, demand: utilities
- Independent system operator (ISO) holds auctions to match supply and demand
 - Day-ahead market: unit commitment
 - Spot market: no discrete decision

Pricing Scheme in Spot Market

• Spot market: ISO minimizes total cost

$$\begin{array}{ll} \min_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} c_g^p p_{gt} \\ \text{s.t.} & \sum_{g \in \mathcal{G}} p_{gt} = d_t, \quad \forall t \in \mathcal{T} \\ & (p_{gt}) \in X'_{gt}, \quad \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

- Let the optimal primal and dual solution be p_{gt}^* and λ_t^* .
- λ_t^* is the electricity price: More demand \rightarrow more expensive technology \rightarrow higher λ_t^*

λ_t^* Guarantees Individual Rationality in Spot Markets

• Profit-maximizing problem for g has the same solution as the ISO's problem:

$$\begin{array}{ll} \max_{p_{gt}} & \sum_{t \in \mathcal{T}} (\lambda_t^* - c_g^p) p_{gt} \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall t \in \mathcal{T} \end{array}$$

• How to prove this? Decompose the Lagrangified ISO's problem

r

Proof for Individual Rationality in Spot Markets

• Lagrangify the demand constraint in the min-cost problem using λ_t^* . Due to convexity, p_{gt}^* is optimal to the following:

$$\begin{array}{ll} \min_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} c_g^p p_{gt} + \sum_{t \in \mathcal{T}} \lambda_t^* (\sum_{g \in \mathcal{G}} p_{gt} - d_t) \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

• Drop constant term $\lambda_t^* d_t$, reverse the sense:

$$\begin{array}{ll} \max_{p_{gt}} & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} (\lambda_t^* - c_g^p) p_{gt} \\ \text{s.t.} & (p_{gt}) \in X_{gt}', \ \forall g \in \mathcal{G}, t \in \mathcal{T} \end{array}$$

• Decomposable by g

Cheng Guo, Merve Bodur & Josh Taylor

Pricing for Markets with Discrete Decisions is Challenging

- No dual price in MIP
- Literature on discrete energy market
 - Restricted pricing
 - Convex hull pricing Extended locational marginal pricing
- Literature on indivisible goods
 - Discrete convexity
 - Alpha-price mechanism
- Still an open question

[O'Neil et al., 2005]

[Hogan and Ring, 2003: Gribik et al., 2007]

[Danilov et al., 2001; Baldwin and Klemperer, 2019] [Milgrom and Watt. 2022]

Introduction		Convexification	Pricing Scheme	CuttingPlaneAlgo	Summary
Recap:	Unit	Commitment	Problem & CPP Refo	rmulation	
UC	\mathcal{C} : min	$\sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^p \right)$	$\left(c_{g}^{u} u_{gt} \right)$		
	s.t.	$\sum_{g\in\mathcal{G}} ho_{gt} = d_t$	$orall t \in \mathcal{T}$		(λ_t)
		$\mathbf{a}_{jgt}^{\phi\top}\mathbf{x}=b_{jgt}$	$orall j=1,,m,g\in$	$\in \mathcal{G}, t \in \mathcal{T}$	
		$z_{gt} \in \{0,1\}$	$orall m{g} \in \mathcal{G}, t \in \mathcal{T}$		
1	P ^{CPP} : m	nin $\mathbf{c}^{ op}\mathbf{x}$			
	5	s.t. $\mathbf{a}_j^{ op}\mathbf{x} = b_j$	orall j=1,,m		
		$\mathbf{a}_j^ op X \mathbf{a}_j = b_j^2$	orall j=1,,m		
		$x^k = X_{kk}$	$orall m{k} \in \mathcal{B}$		
		$\left[\begin{array}{cc} 1 & \mathbf{x}^{\top} \\ \mathbf{x} & X \end{array}\right] \in \mathcal{C}$	7*		CLEMS≉N

Cheng Guo, Merve Bodur & Josh Taylor

COP Duality for Discrete Markets & Games

MIP Workshop 2023 14 / 24

Convexification of UC

• CPP reformulation:

$$\mathcal{UC}^{CPP} = \min \quad \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^{\rho} p_{gt} + c_g^{u} u_{gt} \right)$$

s.t.
$$\sum_{g \in \mathcal{G}} p_{gt} = d_t \qquad \forall t \in \mathcal{T} \qquad (\lambda_t)$$

$$\mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} \qquad \qquad \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \qquad (\phi_{jgt})$$

$$\mathsf{Tr}(\mathbf{a}_t^{\lambda} \mathbf{a}_t^{\lambda \top} X) = d_t^2 \qquad \forall t \in \mathcal{T}$$

$$(\Lambda_t)$$

$$\mathsf{Tr}(\mathbf{a}_{jgt}^{\phi}\mathbf{a}_{jgt}^{\phi\top}X) = b_{jgt}^2 \qquad \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \qquad (\Phi_{jgt})$$

$$z_{gt} = Z_{gt}$$
 $\forall g \in \mathcal{G}, t \in \mathcal{T}$ (δ_{gt})

$$\begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \in \mathcal{C}_{n+1}^* \tag{\Omega}$$

• Dual problem:

$$\mathcal{UC}^{\mathsf{COP}} = \max \sum_{t \in \mathcal{T}} \left(d_t \lambda_t + d_t^2 \Lambda_t + \sum_{j=1}^m \sum_{g \in \mathcal{G}} \left(b_{jgt} \phi_{jgt} + b_{jgt}^2 \Phi_{jgt} \right) \right)$$

s.t. $(\boldsymbol{\lambda}, \boldsymbol{\phi}, \boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\delta}, \Omega) \in \mathcal{F}^{\mathsf{COP}}$

Shadow Price for Day-Ahead Market: Copositive Dual Pricing (CDP)

Let $(\lambda^*, \phi^*, \Lambda^*, \phi^*)$ be an optimal solution for \mathcal{UC}^{COP} . Under the CDP mechanism, at hour t the system operator:

(i) collects from the load:

$$d_t \lambda_t^* + d_t^2 \Lambda_t^* + \sum_{g \in \mathcal{G}} \sum_{j=1}^m \left(b_{jgt} \phi_{jgt}^* + b_{jgt}^2 \Phi_{jgt}^* \right)$$

(ii) pays to the generator g:

$$p_{gt}^* \lambda_t^* + P_{gt}^* \Lambda_t^* + \sum_{j=1}^m \left(\mathbf{a}_{jgt}^{\phi} \mathbf{x}^* \phi_{jgt}^* + \mathsf{Tr}(\mathbf{a}_{jgt}^{\phi} \mathbf{a}_{jgt}^{\phi\top} X^*) \Phi_{jgt}^* \right) + \sum_{g' \in \mathcal{G} \setminus \{g\}} f(\Lambda_t^*, p_{gt}^*, p_{g't}^*)$$

Proof for Individual Rationality in Day-Ahead Markets

• Lagrangified CPP:

Cheng Guo,

$$\begin{array}{ll} \min & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right) + \lambda_t^* \sum_{t \in \mathcal{T}} (d_t - \sum_{g \in \mathcal{G}} p_{gt}) + \Lambda_t^* \sum_{t \in \mathcal{T}} (d_t^2 - \operatorname{Tr}(\mathbf{a}_t^\lambda \mathbf{a}_t^{\lambda \top} X)) \\ \text{s.t.} & \mathbf{a}_{jgt}^{\phi \top} \mathbf{x} = b_{jgt} & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & \operatorname{Tr}(\mathbf{a}_{jgt}^{\phi} \mathbf{a}_{jgt}^{\phi \top} X) = b_{jgt}^2 & \forall j = 1, ..., m, g \in \mathcal{G}, t \in \mathcal{T} \\ & z_{gt} = Z_{gt} & \forall g \in \mathcal{G}, t \in \mathcal{T} \\ & \left[\begin{matrix} 1 & x^\top \\ x & X \end{matrix} \right] \in \mathcal{C}_{n+1}^* \\ \end{array}$$

- Idea: decompose this by g. But how?
 - First idea: make the conic constraint decomposable
 - Second idea: make $\Lambda_t^* = 0$
- A decomposable "Lagrangified MIP"

$$\begin{array}{c} \min \quad \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} \left(c_g^p p_{gt} + c_g^u u_{gt} \right) + \lambda_t^* \sum_{t \in \mathcal{T}} (d_t - \sum_{g \in \mathcal{G}} p_{gt}) \\ \underbrace{\text{s.t.} \quad \mathbf{a}^{\phi \top} \mathbf{x}}_{\text{Merve Bodur & Josh Taylor}} = \underbrace{b_{int}}_{\text{COP Duality for Discrete Markets & Games}} \underbrace{\forall i = 1, \dots, m, g \in \mathcal{G}, t \in \mathcal{T}}_{\text{MIP Workshop 2023}} \underbrace{\text{MIP Workshop 2023}}_{\text{17 / 24}} 17 / 24 \end{aligned}$$

Some Other Analytical Results

- System operators: Revenue from load = Payment to generators
- Generators: Total revenue = total costs (revenue neutrality)
- Supports market equilibrium
- A modified version of CDP that ensures individual revenue adequacy and uses linear prices
 - Results for CDP can be extended to this

Convexification	Pricing Scheme	CuttingPlaneAlgo	
roduction	roduction Convexification	roduction Pricing Scheme	roduction Pricing Scheme CuttingPlaneAlgo

Introduction

2 Convexification of Unit Commitment

③ Pricing Scheme in Discrete Energy Markets

4 A Novel Cutting Plane Algorithm for COP

5 Summary

Solve the Dual Pricing Problem (A Copositive Program)

$$\begin{split} \mathcal{UC}^{\mathsf{COP}} &= \max \quad \sum_{t \in \mathcal{T}} \left(d_t \lambda_t + d_t^2 \Lambda_t + \sum_{j=1}^m \sum_{g \in \mathcal{G}} \left(b_{jgt} \phi_{jgt} + b_{jgt}^2 \Phi_{jgt} \right) \right) \\ &\text{s.t.} \quad (\lambda, \phi, \Lambda, \Phi, \delta, \Omega) \in \mathcal{F}^{\mathsf{COP}} \end{split}$$

• $\mathcal{F}^{\mathsf{COP}}$ includes conic constraint $\Omega \in \mathcal{C}_{n+1}$

- In literature: solved with SDP restriction
 - Define \mathcal{S}^+ and \mathcal{N} $(\ni X_{ij} \ge 0, \forall i, j)$
 - $\blacktriangleright \ \mathcal{S}^+ + \mathcal{N} \subseteq \mathcal{C}$

A Novel Cutting Plane Algorithm for Solving COP Exactly

$$\begin{array}{ll} \max_{\Omega, \boldsymbol{\lambda}} & \mathbf{q}^{\top} \boldsymbol{\lambda} + \mathsf{Tr}(\boldsymbol{H}^{\top} \Omega) \\ \text{s.t.} & \mathbf{d}^{\top} \boldsymbol{\lambda} + \mathsf{Tr}(\boldsymbol{D}_{i}^{\top} \Omega) = \boldsymbol{g}_{i}, \quad \forall i = 1, ..., m \\ & \boldsymbol{\lambda} \geq \mathbf{0} \\ & \Omega \in \mathcal{C}^{n_{c}} \end{array}$$

• Separation problem [Anstreicher, 2020]:

$$\begin{array}{ll} \max_{w, \boldsymbol{u}, \boldsymbol{z}} & w \\ \text{s.t.} & \hat{\Omega} \boldsymbol{z} \leq -w \boldsymbol{1} + \boldsymbol{M} (1-\boldsymbol{u}) \\ & \boldsymbol{1}^\top \boldsymbol{u} \geq \boldsymbol{q} \\ & \boldsymbol{w} \geq \boldsymbol{0} \\ & \boldsymbol{0} \leq \boldsymbol{z} \leq \boldsymbol{u} \\ & \boldsymbol{u} \in \{0, 1\}^{n_c} \end{array}$$

• If $\bar{w} > 0$, add the cut: $\bar{\mathbf{z}}^{\top} \Omega \bar{\mathbf{z}} \ge 0$

, *n*

Tighten the Master Problem Via Second-Order Cone Program

$$\begin{array}{ll} \max_{\Omega, \boldsymbol{\lambda}} & \mathbf{q}^{\top} \boldsymbol{\lambda} + \operatorname{Tr}(\boldsymbol{H}^{\top} \Omega) \\ \text{s.t.} & \mathbf{d}^{\top} \boldsymbol{\lambda} + \operatorname{Tr}(\boldsymbol{D}_{i}^{\top} \Omega) = g_{i}, \quad \forall i = 1, ..., m \\ & \boldsymbol{\lambda} \geq \mathbf{0} \\ & \boldsymbol{V} + \boldsymbol{N} = \Omega \\ & \boldsymbol{N} \geq \mathbf{0} \\ & \boldsymbol{V} \in \mathcal{S}_{n}^{+} \\ & \boldsymbol{V}_{ii} \geq \mathbf{0} \\ & \boldsymbol{V}_{ii} \mathbf{V}_{jj} \geq \boldsymbol{V}_{ij}^{2} \\ & \boldsymbol{\nabla}_{ii} \boldsymbol{V}_{jj} \geq \boldsymbol{V}_{ij}^{2} \\ & \boldsymbol{\nabla}_{ii} \in \mathcal{C}^{n_{c}} \end{array}$$

- Converges to a feasible (not necessarily optimal) solution
- No worse than the SDP approximation $\mathcal{S}^+ + \mathcal{N} \subseteq \mathcal{C}$

Cheng Guo, Merve Bodur & Josh Taylor

Comments and Performance of Cutting Plane Algorithms

- Straightforward to implement (vs simplicial partition [Bundfuss and Dür, 2008])
- Experiment on the max clique problem (2nd DIMACS dataset)
 - ► Cutting plane is more accurate and sometimes faster than the SDP approximation
- Significant speedup with the SOC-strengthened master problem
- To be improved:
 - Speed up the separation problem
 - Bounding the master problem at initialization
 - Tighter master problem
 - Other types of cuts

	CuttingPlaneAlgo	Summary

Summary

- A notion of duality for discrete problems
- Pricing scheme for discrete energy markets with good properties
- Novel cutting plane algorithm for copositive programs