Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem

Cheng Guo

School of Mathematical and Statistical Sciences Clemson University

Joint work with Harsha Nagarajan and Merve Bodur

Alternating Current Optimal Transmission Switching (ACOTS)

• ACOTS: switch off lines to reduce line congestion, subject to AC power flow constraints

ACOTS Background

- Reduce congestion without building new lines
- Similar to Braess's paradox in transportation networks
- Incorporating switching decisions to the AC optimal power flow (ACOPF) problem

A Simplified ACOTS Formulation

$egin{array}{lll} { m min} & f(p_i) \ { m s.t.} & S_{ij} = V_i (V_i^* - % - V_i) & V_i = V_i (V_i^* - V_i) \end{array}$	$V_i^*)Y_{ii}^*z_{ij}$ $orall (i,j)\in \mathcal{A}$	\rightarrow Convex quadratic cost function \rightarrow Ohm's law
$S_i = \sum_{(i,j)\in\mathcal{A}\cup\mathcal{A}^R}$	-	ightarrow Kirchhoff's law (flow balance)
$\underline{oldsymbol{v}}_i \leq V_i \leq \overline{oldsymbol{v}}_i$	$orall i \in \mathcal{N}$	ightarrow Voltage magnitude limits
$ \mathcal{S}_{ij} \leqslant\overline{m{s}}_{ij}$	$orall (i,j) \in \mathcal{A} \cup \mathcal{A}^{R}$	ightarrow Apparent power upper limit
${old S}_i \leq S_i \leq {old S}_i$	$orall i \in \mathcal{N}$	ightarrow Power limits
$z_{ij} \in \{0,1\}$	$orall (i,j) \in \mathcal{A}$	

- A mixed-integer nonlinear program (MINLP)
- Need to linearize $S_{ij} = V_i(V_i^* V_j^*)Y_{ij}^*z_{ij}$

$V_i:\\S_{ij} = p_{ij} + \mathbf{j}q_{ij}:$	AC voltage AC power flow
$S_i = p_i + \mathbf{j}q_i$:	Difference between generation and demand
z _{ij} :	Line on/off

Challenge

$$S_{ij} = V_i (V_i^* - V_j^*) Y_{ij}^* z_{ij}$$

• Reformulation: Lift $W_{ii} = V_i V_i^*$ and $W_{ij} = V_i V_j^*$

$$egin{aligned} S_{ij} &= (\mathcal{W}_{ii} - \mathcal{W}_{ij})Y_{ij}^* & & orall (i,j) \in \mathcal{A} \ & & \underline{m{v}}_i^2 \leq \mathcal{W}_{ii} \leq \overline{m{v}}_i^2 & & orall i \in \mathcal{N} \ & & \mathcal{W} \succeq 0 \ & & & & & \text{rank}(\mathcal{W}) = 1 \end{aligned}$$

- Semidefinite programming (SDP) relaxation: Remove the rank constraint rank(W) = 1
- Second-order cone (SOC) relaxation: 1×1 and 2×2 minors of W are nonnegative

Quadratic Convex (QC) Relaxation

- Proposed by Hijazi, Coffrin, and Van Hentenryck (2017)
 - More efficient compared with SDP relaxation
 - Stronger compared with SOC relaxation

• Denote
$$W_{ii} = w_i$$
, $W_{ij} = w_{ij}^R + \mathbf{j}w_{ij}^I$, and $V_i = v_i \mathbf{e}^{\mathbf{j}\theta}$

$$w_i = v_i^2$$

$$w_{ij}^R = z_{ij}(v_i v_j \cos(\theta_i - \theta_j))$$

$$w_{ij}^I = z_{ij}(v_i v_j \sin(\theta_i - \theta_j))$$

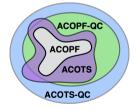
• Challenge: trilinear, trigonometric, and integer terms

Literature Review: Convex Relaxations for ACOTS

- Became more popular recently
 - ▶ Most previous works solve ACOTS approximately: DCOTS, heuristics, etc.
- ACOTS SOC relaxation
- ACOTS QC relaxation

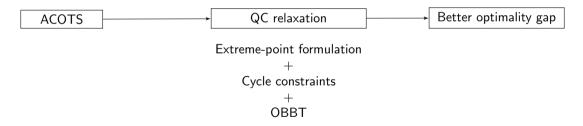
[Kocuk et al., 2017]

[Hijazi et. al. 2017]



Our Contributions

- A strengthened quadratic convex (QC) relaxation, which uses:
 - ACOTS-QC relaxation
 - Extreme-point formulation for bilinear and trilinear terms (novel for ACOTS-QC)
 - Lifted cycle constraints (novel for ACOTS-QC)
 - Optimization-based bound tightening (OBBT)



ACOTS-QC Relaxation

- Quadratic function relaxation for $w_i = v_i^2$
- Let $c_{ij} = cos(\theta_{ij})$ and relax:

$$egin{aligned} c_{ij} \leqslant 1 - rac{1 - \cos(m{ heta}_{ij}^{ extsf{u}})}{(m{ heta}_{ij}^{ extsf{u}})^2}(m{ heta}_{ij}^2) \ c_{ij} \geqslant rac{\cos(m{ar heta}_{ij}) - \cos(m{ heta}_{ij})}{m{ar heta}_{ij} - m{ heta}_{ij}}(m{ heta}_{ij} - m{ heta}_{ij}) + \cos(m{ heta}_{ij})) \end{aligned}$$

•
$$z_{ij} = 0 \Rightarrow c_{ij} = 0$$
: use disjunctive programming

• Similar for $s_{ij} = sin(\theta_{ij})$

Extreme-point Formulation for Sum of Two Trilinear Terms

$$f = \mathbf{a}_1 w_{ij}^R + \mathbf{a}_2 w_{ij}^I = \mathbf{a}_1 v_i v_j c_{ij} + \mathbf{a}_2 v_i v_j s_{ij}$$
$$w_{ij}^R = v_i v_j c_{ij} \Rightarrow w_{ij}^R = \sum_{k=1}^8 \lambda_{ijk}^c (\boldsymbol{\xi}_1^k \boldsymbol{\xi}_2^k \boldsymbol{\xi}_3^k)$$

- ► $\{\boldsymbol{\xi}^k\}_{k=1,...,8}$ are extreme points of $[\underline{\boldsymbol{v}}_i, \overline{\boldsymbol{v}}_i] \times [\underline{\boldsymbol{v}}_j, \overline{\boldsymbol{v}}_j] \times [\underline{\boldsymbol{c}}_{ij}, \overline{\boldsymbol{c}}_{ij}]$
- Linear combination of extreme points
- Similar for $w_{ij}^I = v_i v_j s_{ij}$
- H^1 ($z_{ij} = 1$): extreme-point formulation for f describing convex hull
 - Tighter than recursive McCormick
- H: reformulate H^1 for on-off options with big-M

•
$$H^0(z_{ij}=0)$$
: $c_{ij}=s_{ij}=w_{ij}^R=w_{ij}^I=0$

Extreme-point Formulation for Sum of Two Trilinear Terms (Continued)

Theorem

 $H = \operatorname{conv}(H^0 \cup H^1)$

- An extreme-point formulation for ACOTS-QC
- Previous works: use recursive McCormick-based relaxations, not as tight

3

 $\mathbf{2}$

Lifted Cycle Constraints

- Strengthening constraints over cycles of power networks
 - $\bullet \ \theta_{ik} = \theta_{ij} + \theta_{jk} \Rightarrow \cos(\theta_{ik}) = \cos(\theta_{ij})\cos(\theta_{jk}) \sin(\theta_{ij})\sin(\theta_{jk})$

$$\bullet \ c_{ik} = c_{ij}c_{jk} - s_{ij}s_{jk}, s_{ik} = c_{ij}s_{jk} + s_{ij}c_{jk}$$

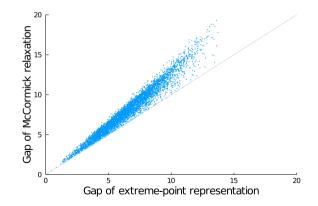
- Derive lifted cycle constraints on c and s
 - ▶ Previous literature: $w_j w_{ik}^R = w_{ij}^R w_{jk}^R w_{ij}^I w_{jk}^I$, $w_j w_{ik}^I = w_{ij}^R w_{jk}^I + w_{ij}^I w_{jk}^R$
 - ACOTS-QC + lifted cycle constraints
- Linearize bilinear terms with extreme-point formulation
- Add line-switching variables via big-M constraints
- Also implement for 4-cycles

Extreme-point Formulation vs. McCormick Relaxation

• Relaxation for summation of bilinear terms

$$\sum_{(j_1,j_2)\in\mathcal{P}} x_{j_1}^c x_{j_2}^c, \text{ with } x_i^c \in [-1,1]$$

• Gap between upper and lower bounds of the relaxation



Cutting Plane for Lifted Cycle Constraints

- · Lifted cycle constraints add extra constraints and variables
- Add only violated constraints:
 - Benders cuts from extreme point formulation (without binary variables)
 - Reformulate with disjunctive programming
- © One separation problem per cycle; parallelizable
- ☺ Improved solving time for most instances

Optimization-based Bound Tightening (OBBT)

- Often used for AC power flow problems
- Tighten the bounds of v_i , θ_{ij} , z_{ij} and y_C
- Bound tightening optimization problem for variable x:

```
\begin{array}{ll} \min/\max & x \\ & \text{s.t.} & f(p_i) \leq f^* \\ & \text{ACOTS-QC constraints with relaxed binary variables} \end{array}
```

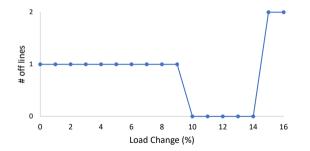
Experiment: Optimality Gap Comparison

Dataset: PGLib; Language: Julia 1.6; Solver: Gurobi

- Baseline: PowerModels.jl
 - ACOTS-QC with recursive McCormick relaxation
- Compare with: ACOTS-QC + extreme-point formulation/lifted cycle constraints/ \underline{OBBT}
- Main findings:
 - ▶ <u>OBBT</u> is most helpful for SAD (small voltage angle) and API (congested) instances
 - Extreme-point formulation and lifted cycle constraints are most helpful for SAD instances

Experiment: Number of Lines Off

• Various load profiles for "TYP" case30_ieee



CLEMS**\$**N

Experiment: Lifted Cycle Constraints for ACOPF-QC

- ACOPF-QC + lifted cycle constraints is also novel
- Most helpful for SAD instances

pglib_opf_case14_ieeesad	6.06%
pglib_opf_case24_ieee_rtssad	0.53%
pglib_opf_case73_ieee_rtssad	0.57%
pglib_opf_case3_lmbdapi	0.68%
pglib_opf_case24_ieee_rtsapi	0.14%
pglib_opf_case73_ieee_rtsapi	0.22%
pglib_opf_case179_gocapi	0.11%
nesta_case6_csad	0.21%
nesta_case24_ieee_rtssad	0.53%
nesta_case29_edinsad	4.85%
nesta_case73_ieee_rtssad	0.57%
nesta_case118_ieeesad	0.24%
nesta_case240_weccsad	0.12%
nesta_case3_lmbdapi	0.33%

Summary

- ACOTS: a MINLP problem
- Tight relaxations for ACOTS
 - ACOTS-QC relaxation
 - Extreme-point formulation
 - Lifted cycle constraints
 - OBBT